organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 2-bromomethyl-1-phenylsulfonyl-1H-indole-3-carboxylate

G. Chakkaravarthi,^a N. Ramesh,^b A. K. Mohanakrishnan^b and V. Manivannan^c*

^aDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cDepartment of Physics, Presidency College, Chennai 600 005, India

Correspondence e-mail: manivan_1999@yahoo.com

Received 16 July 2007; accepted 17 July 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.115; data-to-parameter ratio = 23.4.

In the title compound, C₁₈H₁₆BrNO₄S, the phenyl ring forms a dihedral angle of $83.87 (2)^{\circ}$ with the indole ring system. The molecular structure is stabilized by weak intramolecular C- $H \cdots O$ interactions and the crystal packing is stabilized by weak intermolecular $C-H \cdots O$ interactions.

Related literature

For related literature, see: Kusunoki et al. (2006); Nieto et al. (2005); Liu et al. (2007); Palani et al. (2006). A similar compound with a methoxycarbonyl substituent has been reported (Senthil Kumar et al., 2006).

Experimental

Crystal data C18H16BrNO4S $M_r = 422.29$

Monoclinic, $P2_1/c$ a = 8.1684 (3) Å

b = 9.4962 (4) Å Mo $K\alpha$ radiation c = 23.0376 (9) Å $\mu = 2.45 \text{ mm}^{-1}$ $\beta = 94.147 \ (1)^{\circ}$ T = 295 (2) K V = 1782.32 (12) Å³ $0.26 \times 0.20 \times 0.18 \text{ mm}$ Z = 4

Data collection

Bruker Kappa APEX II	23119 measured reflections
diffractometer	5283 independent reflections
Absorption correction: multi-scan	3029 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.037$
$T_{\min} = 0.527, \ T_{\max} = 0.640$	

Refinement

 $\begin{array}{l} R[F^2>2\sigma(F^2)]=0.040\\ wR(F^2)=0.115 \end{array}$ 226 parameters H-atom parameters constrained S = 1.00 $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.51$ e Å⁻³ 5283 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2\cdots O2^{i}$	0.93	2.58	3.396 (3)	147
C5−H5···O1 ⁱⁱ	0.93	2.50	3.419 (3)	171
$C2-H2\cdots O1$	0.93	2.55	2.907 (3)	103
C8-H8···O2	0.93	2.27	2.852 (4)	121
C11-H11···O3	0.93	2.48	3.000 (4)	116
$C15-H15A\cdots O4$	0.97	2.28	2.845 (3)	116
C15−H15 <i>B</i> ···O1	0.97	2.21	2.904 (3)	128

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x - 1, y, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors acknowledge the Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Chennai, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2442).

References

- Bruker (2004). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kusunoki, N., Ito, T., Sakurai, N., Handa, H. & Kawai, S. (2006). Anticancer Res. 26, 3229-3336.
- Liu, Y., Gribble, G. W. & Jasinski, J. P. (2007). Acta Cryst. E63, 0738-0740.

Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.

- Palani, K., Ponnuswamy, M. N., Jaisankar, P., Srinivasan, P. C. & Nethaji, M. (2006). Acta Cryst. E62, 0440-0442.
- Senthil Kumar, G., Chinnakali, K., Ramesh, N., Mohanakrishnan, A. K. & Fun, H.-K. (2006). Acta Cryst. E62, 05155-05157.
- Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3564 [doi:10.1107/81600536807034800]

Ethyl 2-bromomethyl-1-phenylsulfonyl-1*H*-indole-3-carboxylate

G. Chakkaravarthi, N. Ramesh, A. K. Mohanakrishnan and V. Manivannan

Comment

The benzenesulfonamide derivatives possess significant biological activities, such as proliferation of colon adenocarcinoma cells (Kusunoki *et al.*, 2006) and antibacterial (Nieto *et al.*, 2005).

The geometric parameters in the title compound agree with the reported values of similar structures (Liu *et al.*, 2007; Palani *et al.*, 2006). The 5-membered and 6-membered rings of the indole moiety are co-planar [dihedral angle = $0.46 (2)^{\circ}$]. The sum of the bond angles around N1 (359.5°) indicates sp^2 hybridization.

The phenyl ring forms a dihedral angle 83.87 (2)° with the indole ring system. The torsion angles C7 - N1 - S1 - O2 and C14 - N1 - S1 - O1 [27.2 (2)° and -36.3 (2)°, respectively] indicate the *syn* conformation of the sulfonyl moiety.

The details of the hydrogen bonding are given in Table 1. The molecular structure is stabilized by weak intramolecular C - H···O interactions and the crystal packing of (I), (Fig. 2) is stabilized by weak intermolecular C - H···O interactions.

A similiar compound with methoxycarbonyl has been reported (Senthil Kumar et al., 2006).

Experimental

Ethyl-1-benzenesulfonyl-2-bromomethyl indole-3-carboxylate was prepared *via* the allylic bromination of ethyl-1-benzenesulfonyl-2-methyl indole-3-carboxylate (3.93 mmol) using *N*-bromo succiniamide (3.93 mmol) in a catalytic amount of benzoyl peroxide in CCl_4 (20 ml) at reflux. The obtained compound was dissolved in hexane and ethyl acetate (9:1). Crystals were grown by slow evaporation of an ethyl acetate solution.

Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å, $U_{iso}(H) = 1.2Ueq(C)$ for aromatic C—H, C—H = 0.97 Å and $U_{iso}(H) = 1.2Ueq(C)$ for CH₂ and C—H = 0.96 Å and $U_{iso}(H) = 1.5Ueq(C)$ for CH₃

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. The packing of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Ethyl 2-bromomethyl-1-phenylsulfonyl-1*H*-indole-3-carboxylate

$F_{000} = 856$
$D_{\rm x} = 1.574 \ {\rm Mg \ m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 6136 reflections
$\theta = 2.3 - 24.9^{\circ}$
$\mu = 2.45 \text{ mm}^{-1}$
T = 295 (2) K
Needle, colourless
$0.26 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker Kappa APEX II diffractometer	5283 independent reflections
Radiation source: fine-focus sealed tube	3029 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 295(2) K	$\theta_{\text{max}} = 30.2^{\circ}$
ω and ϕ scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.527, T_{\max} = 0.640$	$k = -13 \rightarrow 13$
23119 measured reflections	$l = -32 \rightarrow 32$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.115$	$w = 1/[\sigma^2(F_o^2) + (0.0502P)^2 + 0.431P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\text{max}} = 0.002$
5283 reflections	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
226 parameters	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2387 (3)	0.2446 (3)	0.68219 (9)	0.0461 (5)
C2	0.2765 (3)	0.3652 (3)	0.71316 (11)	0.0589 (6)
H2	0.3853	0.3907	0.7222	0.071*
C3	0.1510 (4)	0.4474 (3)	0.73057 (13)	0.0747 (8)
H3	0.1748	0.5289	0.7519	0.090*
C4	-0.0089 (4)	0.4103 (3)	0.71671 (13)	0.0739 (8)
H4	-0.0932	0.4660	0.7292	0.089*
C5	-0.0456 (3)	0.2918 (3)	0.68459 (13)	0.0699 (8)
Н5	-0.1546	0.2690	0.6743	0.084*
C6	0.0785 (3)	0.2060 (3)	0.66739 (12)	0.0590 (6)
H6	0.0545	0.1241	0.6463	0.071*
C7	0.2583 (3)	-0.0606 (3)	0.59266 (11)	0.0548 (6)
C8	0.2107 (4)	-0.1621 (3)	0.63136 (14)	0.0756 (8)
H8	0.2394	-0.1554	0.6711	0.091*
С9	0.1188 (4)	-0.2737 (4)	0.60822 (19)	0.0861 (10)
Н9	0.0865	-0.3439	0.6331	0.103*
C10	0.0738 (4)	-0.2844 (3)	0.55022 (18)	0.0802 (9)
H10	0.0090	-0.3598	0.5367	0.096*
C11	0.1223 (3)	-0.1862 (3)	0.51146 (14)	0.0658 (7)
H11	0.0935	-0.1955	0.4718	0.079*
C12	0.2166 (3)	-0.0711 (2)	0.53288 (11)	0.0518 (6)
C13	0.2853 (3)	0.0485 (2)	0.50541 (10)	0.0472 (5)
C14	0.3655 (3)	0.1301 (3)	0.54708 (10)	0.0467 (5)
C15	0.4574 (3)	0.2627 (3)	0.53971 (12)	0.0589 (6)
H15A	0.5022	0.2631	0.5019	0.071*
H15B	0.5481	0.2683	0.5692	0.071*
C16	0.2679 (3)	0.0703 (3)	0.44194 (11)	0.0565 (6)
C17	0.3131 (4)	0.2231 (4)	0.36344 (11)	0.0755 (9)
H17A	0.2003	0.2113	0.3479	0.091*
H17B	0.3820	0.1598	0.3429	0.091*
C18	0.3658 (5)	0.3693 (5)	0.35624 (15)	0.1081 (13)
H18A	0.3578	0.3931	0.3156	0.162*
H18B	0.4774	0.3796	0.3717	0.162*
H18C	0.2966	0.4309	0.3767	0.162*
N1	0.3515 (2)	0.0648 (2)	0.60141 (8)	0.0529 (5)
01	0.5447 (2)	0.2186 (3)	0.66281 (9)	0.0900 (8)
02	0.4074 (3)	0.0190 (3)	0.70652 (8)	0.0897 (7)
O3	0.2063 (3)	-0.0149 (2)	0.40830 (9)	0.0834 (6)
O4	0.3275 (2)	0.1922 (2)	0.42551 (7)	0.0658 (5)
S1	0.40267 (8)	0.13478 (9)	0.66717 (3)	0.0608 (2)
Br1	0.31355 (4)	0.42658 (3)	0.546316 (14)	0.07439 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0396 (11)	0.0612 (14)	0.0374 (11)	0.0051 (10)	0.0012 (9)	-0.0013 (10)
C2	0.0543 (14)	0.0657 (15)	0.0552 (14)	-0.0019 (13)	-0.0056 (12)	-0.0089 (13)
C3	0.094 (2)	0.0675 (18)	0.0618 (17)	0.0152 (16)	-0.0029 (16)	-0.0147 (14)
C4	0.073 (2)	0.081 (2)	0.0690 (18)	0.0306 (16)	0.0164 (15)	0.0056 (16)
C5	0.0412 (13)	0.084 (2)	0.085 (2)	0.0091 (13)	0.0078 (13)	0.0100 (17)
C6	0.0432 (13)	0.0621 (15)	0.0710 (16)	-0.0007 (11)	-0.0006 (12)	-0.0062 (13)
C7	0.0471 (13)	0.0575 (14)	0.0597 (15)	0.0160 (11)	0.0036 (11)	-0.0021 (12)
C8	0.0763 (19)	0.076 (2)	0.0755 (19)	0.0153 (16)	0.0082 (15)	0.0103 (16)
C9	0.077 (2)	0.0643 (19)	0.119 (3)	0.0090 (16)	0.020 (2)	0.023 (2)
C10	0.0606 (17)	0.0526 (16)	0.127 (3)	0.0066 (13)	0.0039 (18)	-0.0018 (18)
C11	0.0529 (15)	0.0556 (15)	0.087 (2)	0.0102 (12)	-0.0040 (14)	-0.0149 (14)
C12	0.0408 (12)	0.0511 (13)	0.0630 (15)	0.0150 (10)	0.0009 (11)	-0.0110 (11)
C13	0.0395 (11)	0.0520 (13)	0.0498 (13)	0.0120 (9)	0.0006 (10)	-0.0119 (10)
C14	0.0369 (11)	0.0558 (13)	0.0474 (13)	0.0120 (10)	0.0032 (9)	-0.0105 (10)
C15	0.0478 (13)	0.0648 (15)	0.0641 (15)	0.0025 (12)	0.0034 (11)	-0.0143 (13)
C16	0.0504 (14)	0.0670 (16)	0.0521 (14)	0.0143 (12)	0.0035 (11)	-0.0147 (13)
C17	0.0757 (19)	0.106 (2)	0.0452 (15)	0.0131 (17)	0.0034 (13)	-0.0012 (15)
C18	0.134 (4)	0.125 (3)	0.064 (2)	-0.018 (3)	-0.002 (2)	0.023 (2)
N1	0.0481 (11)	0.0638 (12)	0.0461 (11)	0.0088 (9)	-0.0015 (9)	-0.0099 (9)
O1	0.0357 (9)	0.160 (2)	0.0733 (12)	-0.0026 (12)	-0.0043 (8)	-0.0447 (14)
O2	0.1038 (16)	0.1094 (17)	0.0528 (11)	0.0539 (14)	-0.0144 (11)	-0.0001 (11)
O3	0.1037 (16)	0.0862 (14)	0.0584 (12)	-0.0081 (13)	-0.0063 (11)	-0.0274 (11)
O4	0.0751 (12)	0.0783 (13)	0.0436 (9)	-0.0006 (10)	0.0008 (8)	-0.0060 (9)
S1	0.0430 (3)	0.0916 (5)	0.0460 (3)	0.0190 (3)	-0.0092 (3)	-0.0135 (3)
Br1	0.0816 (2)	0.05670 (18)	0.0855 (2)	0.00656 (14)	0.01067 (16)	-0.00998 (14)
Geometric p	arameters (Å, °)					
C1—C2		1.373 (3)	C11-	-H11	0.93	00
C1—C6		1.378 (3)	C12-	-C13	1.43	4 (3)
C1—S1		1.752 (2)	C13–		1 364 (3)	
C2—C3		1.371 (4)	C13–	-C16	1.47	(3)
С2—Н2		0.9300	C14–	-N1	1.40	9 (3)
C3—C4		1.368 (5)	C14-	-C15	1.48	2 (4)
С3—Н3		0.9300	C15-	–Br1	1.96	2 (2)
C4—C5		1.368 (4)	C15-	-H15A	0.97	00
C4—H4		0.9300	C15–	-H15B	0.97	00
С5—С6		1.381 (4)	C16–	03	1.20	5 (3)
С5—Н5		0.9300	C16–	-04	1.32	2 (3)
С6—Н6		0.9300	C17–	-04	1.45	6 (3)
С7—С8		1.388 (4)	C17–	C18	1.46	7 (5)
C7—C12		1.398 (4)	C17–	-H17A	0.97	00
C7—N1		1.420 (3)	C17–	–H17B	0.97	00
С8—С9		1.383 (5)	C18–	-H18A	0.96	00
С8—Н8		0.9300	C18–	-H18B	0.96	00

C9—C10	1.364 (5)	C18—H18C	0.9600
С9—Н9	0.9300	N1—S1	1.679 (2)
C10—C11	1.370 (4)	O1—S1	1.416 (2)
С10—Н10	0.9300	O2—S1	1.424 (3)
C11—C12	1.406 (4)		
C2—C1—C6	121.6 (2)	C14—C13—C16	128.8 (2)
C2-C1-S1	116.92 (18)	C12—C13—C16	122.4 (2)
C6-C1-S1	121 26 (19)	C13—C14—N1	1081(2)
C_{3} — C_{2} — C_{1}	118 8 (2)	C13—C14—C15	128.6(2)
C_{3} C_{2} H_{2}	120.6	N1-C14-C15	123.4(2)
C1 - C2 - H2	120.6	C14— $C15$ — $Br1$	110.73 (16)
C4 - C3 - C2	120.4(3)	C14—C15—H15A	109.5
C4-C3-H3	119.8	Br1	109.5
C^2 — C^3 — H^3	119.8	C14—C15—H15B	109.5
$C_{2}^{3} - C_{4}^{4} - C_{5}^{5}$	120.4(3)	Br1H15B	109.5
$C_3 = C_4 = U_3$	110.8	H15A_C15_H15B	109.5
C_{5} C_{4} H_{4}	119.8	$\begin{array}{c} 1113A - C15 - 1113B \\ 03 - C16 - O4 \end{array}$	100.1 122.2(2)
C_{1}	119.0	03 - 016 - 012	123.3(3) 122.4(2)
$C_4 = C_5 = C_0$	120.5 (5)	04 016 012	123.4(3)
	119.9	04 - 010 - 013	115.5(2)
C0-C5-H5	119.9	04 - 017 - 018	107.4 (3)
$C_1 = C_0 = C_3$	118.4 (5)	O4 - C17 - H17A	110.2
CI = C6 = H6	120.8	C18—C17—H17A	110.2
C5—C6—H6	120.8	04—C1/—H1/B	110.2
C8—C7—C12	121.6 (3)	С18—С17—Н17В	110.2
C8—C7—N1	131.6 (3)	Н17А—С17—Н17В	108.5
C12—C7—N1	106.8 (2)	С17—С18—Н18А	109.5
C9—C8—C7	117.0 (3)	C17—C18—H18B	109.5
С9—С8—Н8	121.5	H18A—C18—H18B	109.5
С7—С8—Н8	121.5	C17—C18—H18C	109.5
C10—C9—C8	122.4 (3)	H18A—C18—H18C	109.5
С10—С9—Н9	118.8	H18B—C18—H18C	109.5
С8—С9—Н9	118.8	C14—N1—C7	108.65 (19)
C9—C10—C11	121.2 (3)	C14—N1—S1	126.64 (17)
С9—С10—Н10	119.4	C7—N1—S1	123.76 (18)
C11—C10—H10	119.4	C16—O4—C17	116.9 (2)
C10-C11-C12	118.6 (3)	O1—S1—O2	119.62 (14)
C10-C11-H11	120.7	O1—S1—N1	108.05 (12)
C12—C11—H11	120.7	O2—S1—N1	105.23 (13)
C7—C12—C11	119.3 (3)	O1—S1—C1	108.76 (13)
C7—C12—C13	107.6 (2)	O2—S1—C1	108.65 (12)
C11—C12—C13	133.1 (2)	N1—S1—C1	105.66 (10)
C14—C13—C12	108.8 (2)		
C6—C1—C2—C3	1.2 (4)	N1-C14-C15-Br1	-89.9 (2)
S1—C1—C2—C3	-174.0 (2)	C14—C13—C16—O3	173.3 (2)
C1—C2—C3—C4	-0.7 (4)	C12—C13—C16—O3	-5.8 (4)
C2—C3—C4—C5	-0.9 (5)	C14—C13—C16—O4	-6.3 (3)
C3—C4—C5—C6	2.0 (5)	C12-C13-C16-O4	174.6 (2)
C2-C1-C6-C5	-0.1 (4)	C13—C14—N1—C7	-0.5 (2)

supplementary materials

S1—C1—C6—C5	174.9 (2)	C15-C14-N1-C7	-179.0 (2)
C4—C5—C6—C1	-1.5 (4)	C13—C14—N1—S1	-169.61 (16)
C12—C7—C8—C9	-0.6 (4)	C15-C14-N1-S1	11.9 (3)
N1—C7—C8—C9	-179.9 (3)	C8—C7—N1—C14	179.6 (3)
C7—C8—C9—C10	-0.8 (5)	C12—C7—N1—C14	0.2 (2)
C8—C9—C10—C11	2.0 (5)	C8—C7—N1—S1	-10.9 (4)
C9—C10—C11—C12	-1.7 (4)	C12—C7—N1—S1	169.74 (16)
C8—C7—C12—C11	0.9 (3)	O3—C16—O4—C17	1.3 (4)
N1-C7-C12-C11	-179.7 (2)	C13—C16—O4—C17	-179.1 (2)
C8—C7—C12—C13	-179.4 (2)	C18—C17—O4—C16	172.4 (3)
N1-C7-C12-C13	0.1 (2)	C14—N1—S1—O1	-36.3 (2)
C10-C11-C12-C7	0.3 (3)	C7—N1—S1—O1	156.06 (19)
C10-C11-C12-C13	-179.5 (2)	C14—N1—S1—O2	-165.21 (19)
C7—C12—C13—C14	-0.4 (2)	C7—N1—S1—O2	27.2 (2)
C11-C12-C13-C14	179.3 (2)	C14—N1—S1—C1	79.9 (2)
C7—C12—C13—C16	178.8 (2)	C7—N1—S1—C1	-87.67 (19)
C11—C12—C13—C16	-1.4 (4)	C2-C1-S1-O1	-29.9 (2)
C12-C13-C14-N1	0.5 (2)	C6-C1-S1-O1	154.9 (2)
C16-C13-C14-N1	-178.7 (2)	C2-C1-S1-O2	101.9 (2)
C12-C13-C14-C15	179.0 (2)	C6—C1—S1—O2	-73.4 (2)
C16—C13—C14—C15	-0.2 (4)	C2-C1-S1-N1	-145.64 (19)
C13-C14-C15-Br1	91.9 (3)	C6-C1-S1-N1	39.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
C2—H2···O2 ⁱ	0.93	2.58	3.396 (3)	147
C5—H5···O1 ⁱⁱ	0.93	2.50	3.419 (3)	171
C2—H2…O1	0.93	2.55	2.907 (3)	103
С8—Н8…О2	0.93	2.27	2.852 (4)	121
С11—Н11…ОЗ	0.93	2.48	3.000 (4)	116
C15—H15A…O4	0.97	2.28	2.845 (3)	116
C15—H15B…O1	0.97	2.21	2.904 (3)	128

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) x-1, y, z.

